Powers of distance-hereditary graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(k, +)-Distance-Hereditary Graphs

In this work we introduce, characterize, and provide algorithmic results for (k, +)–distance-hereditary graphs, k ≥ 0. These graphs can be used to model interconnection networks with desirable connectivity properties; a network modeled as a (k, +)–distance-hereditary graph can be characterized as follows: if some nodes have failed, as long as two nodes remain connected, the distance between the...

متن کامل

Probe Distance-Hereditary Graphs

A graph G = (V,E) is called a probe graph of graph class G if V can be partitioned into two sets P (probes) and N (nonprobes), where N is an independent set, such that G can be embedded into a graph of G by adding edges between certain nonprobes. A graph is distance hereditary if the distance between any two vertices remains the same in every connected induced subgraph. Distancehereditary graph...

متن کامل

Distance-hereditary graphs

Distance-hereditary graphs (sensu Howorka) are connected graphs in which all induced paths are isometric. Examples of such graphs are provided by complete multipartite graphs and ptolemaic graphs. Every finite distance-hereditary graph is obtained from K, by iterating the following two operations: adding pendant vertices and splitting vertices. Moreover, distance-hereditary graphs are character...

متن کامل

Equistable distance-hereditary graphs

A graph is called equistable when there is a nonnegative weight function on its vertices such that a set S of vertices has total weight 1 if and only if S is maximal stable. We show that a necessary condition for a graph to be equistable is sufficient when the graph in question is distance-hereditary. This is used to design a polynomial-time recognition algorithm for equistable distanceheredita...

متن کامل

Powers of cycles, powers of paths, and distance graphs

In 1988, Golumbic and Hammer characterized powers of cycles, relating them to circular-arc graphs. We extend their results and propose several further structural characterizations for both powers of cycles and powers of paths. The characterizations lead to linear-time recognition algorithms of these classes of graphs. Furthermore, as a generalization of powers of cycles, powers of paths, and ev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1995

ISSN: 0012-365X

DOI: 10.1016/0012-365x(94)00052-k